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Shear testing of mercuric iodide single crystals* 
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A specialized shear testing system has been designed and assembled for the purpose of 
measuring the response of thin single crystals of mercuric iodide to shear loading. Numerous 
stress-strain measurements have been made on single crystal samples of thicknesses ranging 
from 0.3 to 1.0mm. Shear strains of over 100% are readily achieved. The results are analysed 
in terms of a two-parameter semiempirical model for yielding that fits the experimental data 
extremely well. The model employs a normalized Gaussian distribution f(s) for the change 
f(s)ds in the relative density of mobile dislocations that occurs when the shear stress s is 
increased from s to s + ds. The Gaussian parameters So (the shear stress at which the density 
of mobile dislocations has reached half its steady state value) and cr (the standard deviation) 
are determined from a least squares fit of the theoretically computed stress-strain curve to the 
experimental data. The "onset of yielding" s o is defined as s o - 2a, which is the shear stress at 
which the density of mobile dislocations has reached about 2% of its steady state value. The 
utility of the model for studying work hardening and time dependent recovery in single crystal 
Hgl 2 is established. 

1. I n t r o d u c t i o n  
Plastic deformation in single crystal mercuric iodide 
(HgI2) was first studied systematically by James and 
Milstein [1, 2]. Owing to the relatively small size of 
available crystals (and to the crystals' softness and 
chemical reactivity), James and Milstein [2] designed 
and built a specialized micromechanical compression 
testing apparatus for use in their experimental pro- 
gramme. Their apparatus was also used by Milstein 
and coworkers [3] to investigate the influence of tem- 
perature upon the elastic limit of single crystal HgI2 in 
compression. Georgeson and Milstein [4] designed 
and built special specimen grips to eliminate end 
effects associated with non-uniform bending and rota- 
tion in tensile and compression testing of small single 
crystals. These were used by Milstein and Georgeson 
[5], in conjunction with James and Milstein's apparatus, 
to determine the response of single crystal HgI 2 to 
uniaxial tensile and compressive loading. Although 
these testing systems enabled the general plastic 
response of single crystal HgI 2 to be determined, 
a major drawback is that they are not suitable for 
the testing of thin specimens (say of thickness 1 mm 
or less). This is important because the practical 
application of HgI2 is for the fabrication of radiation 
detectors, which are in the form of thin slabs (typically 
1 mm or less thickness), and for reasons which are 
indicated here, it is desirable to characterize the 
mechanical properties of the detectors themselves. 
The present paper describes a specialized shear testing 
system, which we have designed and assembled for 
the purpose of measuring the response of thin single 
crystal slabs of HgI2 to shear loading. This mode of 

loading is especially suitable for studying plastic 
deformation in single crystal HgI2 because of its 
anisotropic, layered structure (as is reviewed briefly 
later in this section). We have used the system (and are 
continuing to use it) to determine the shearing response 
of numerous HgI2 single crystal test specimens. 

Interest in single crystal HgI2 has been considerable 
since 1972 when its use as a room-temperature, semi- 
conductor, X-ray detector was reported [6]. For 
example, in 1983, a single issue of the journal 'Nuclear 
Instruments and Methods' [7] was devoted largely to 
the characterization of single crystal HgI2 and its 
potential uses in X-ray and gamma ray detection 
S_ystems; a recent international symposium [8] was 
also primarily devoted to HgI2. Its attractiveness is 
owing to the fact that it is capable of operating as 
a radiation detector at room temperature. There are 
thus numerous potential applications for replacing 
systems which presently require cryogenic cooling 
(e.g. medical applications involving the use of radio 
isotopes, military and space applications, scientific 
uses, etc.) [7-9]. A major problem in the production of 
HgI2 radiation detectors is how to increase the yield of 
good detectors (i.e. reduce the yield of poor detectors) 
fabricated from a given parent crystal. With a view 
towards this end, numerous studies have been made to 
characterize chemical impurities [10-12], stoichiometry 
[13-17], and crystalline imperfections [1-3, 5, 18-22]. 

With regard to the present work, the mechanical 
properties of HgI2 (and their eventual correlation with 
detector efficacy) are of practical interest for several 
reasons. Crystal imperfections, such as dislocations, 
are considered detrimental to the performance of HgI2 
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as a detector [22]; studies of crystal plasticity can 
reveal the nature of the dislocation structure in the 
crystals; dislocations are found in the as grown 
material and changes in the dislocation structure are 
quite possibly induced (inadvertently) by deformation 
during detector fabrication; an understanding of the 
influence of stresses upon the dislocation structure 
can aid in developing optimum processing methods. 
Also, in passing, we mention that single crystals of 
HgI 2 have been grown in microgravity in space on a 
NASA Space Lab mission and are again scheduled to 
be grown on a future Space Lab mission. Since the 
space grown crystals are unavoidably subjected to 
stress upon re-entry into the earth's atmosphere, it is 
important to understand the influence of stress in 
order to be able to evaluate the space grown crystals 
properly. Furthermore, comparisons between the 
plastic response of the space and terrestrial grown 
crystals can help to evaluate potential differences 
between the crystals; such comparisons are planned 
for future study. 

In the present paper, we analyse our data in terms 
of a two-parameter semiempirical model for plastic 
yielding that we have developed as an analytic, com- 
parative, and descriptive tool. The model was descri- 
bed briefly in [5], where it was used to analyse uniaxial 
loading data. Here we show that it generates theoretical 
stress-strain curves that are in excellent agreement 
with our shear test data; we also provide a more 
complete description of the model, including an inter- 
pretation of the model parameters, based upon the 
dislocation structure in HgI 2 proposed by James and 
Milstein [2]. 

In their axial compression tests, James and Milstein 
[2] observed three characteristic responses, i.e. (case a) 
when the direction of load is parallel to the (0 0 1) slip 
planes, the material responds elastically until failure 
occurs by buckling and delamination; (case b) when 
the direction of load is perpendicular to the (00 1) 
slip planes, the material responds elastically until 
the crystal shatters by brittle fracture, with no macro- 
scopically observed plastic deformation; (case c) for 
all other loading directions (not included in cases a or 
b), the crystals were easily plastically deformed by slip 
of the (0 0 1) planes; this slip process was also charac- 
terized by work-hardening. (It is interesting to note 
that, while the crystals behave like brittle glass in one 
mode of loading, they seem more like butter in most 
other modes of loading.) Atomically, the (00 1) slip 
planes can be considered as triatomic layers of IHgI; 
i.e. the crystal structure is a layered sequence of 
monoatomic planes, perpendicular to the [0 0 1] axis, 
in the o r d e r . . .  I H g I I H g I I H g I . . .  ; bonding between 
two successive I-layers (thought to be mainly van der 
Waals) is weak and thus plastic deformation by slip of 
(0 0 1) planes is easy. James and Milstein [2] explained 
their experimental results in terms of the following 
dislocation structure. "(i) There exist easily moved 
dislocations or dislocation segments, the cores of 
which are parallel to the (00 1) crystallographic 
planes; these are termed 'easy glide' dislocations. (ii) 
Although the easy glide dislocations can move readily 
on (0 0 1) planes, individual easy glide dislocations do 

not climb out of their (00 l) slip planes. (iii) There 
exist relatively immobile dislocations or dislocation 
segments ('hard glide' dislocations) that intersect the 
(0 0 1) planes. The cores of the hard glide dislocations 
are parallel to the {100} planes. These dislocations 
are relatively immobile in the sense that a large 
resolved shear stress is required in order to move 
them. (iv) The two types of dislocations (i.e. 'easy' and 
'hard' glide) are the only dislocations that contribute 
to plastic deformation; however, under almost all 
modes of loading, plastic deformation occurs by slip 
of the easy glide dislocations. (v) When the easy glide 
dislocations move on the (0 01) planes, they interact 
with the hard glide dislocations. The interaction inter- 
feres with the movement of (or 'pins') the easy glide 
dislocations, thus causing work hardening." 

In our semiempirical model for plastic yielding, the 
distribution function for the relative density of mobile 
easy glide dislocations as a function of shear stress 
is taken to be a normalized Gaussian. The experi- 
mentally determined Gaussian parameters are shown 
to reflect prior work hardening and time-dependent 
recovery of work hardening in HgI 2 crystals. 

2. Shear  t e s t i n g  s y s t e m  
Figs 1 to 4 illustrate the essential features of the shear 
testing system that was designed and assembled for 
the purpose of measuring the shearing response of 
single crystal HgI2 specimens that are in the form of 
thin slabs. The samples are glued between upper and 
lower plates, as illustrated in Figs 1 and 2. The lower 
plate is mounted on the sample platform (see Figs 2 
and 3), which is itself part of a Unitron model GME-5 
microgoniometer (see Fig. 3) that has been modified to 
serve as a fixture in the shear testing system. The 
sample platform is driven forward (i.e. "to the left" in 
Figs 1 and 3 and "upward" in Fig. 2) by rotation of 
a micrometer screw. The forward motion of the upper 
plate is resisted by a pin that is part of a load cell 
assembly. The force exerted on the pin (i.e. the shear 
force exerted on the crystal sample) is measured by the 
load cell system (containing a 51b (1 lb = 0.454kg) 
Lebow model 3108-5 load cell and model 7525 trans- 
ducer) and recorded on the Y axis of an X- Y recorder 
(see Fig. 4); the load cell is securely mounted in the 
microgoniometer, as illustrated in Fig. 3. The load cell 
is compensated for off axis loading (i.e. is resistant to 
extraneous bending and side loading forces) and has a 
resolution of better than 0.05 % of full scale. The shear 
stress s applied to the specimen is the shear force 
divided by the (0 0 1) surface area of the crystal sample 
(i.e. the area of the surface of the sample viewed in 
Fig. 2). The displacements of the upper and lower 

UPPER PLATE~ ~RYSTAL SAMPLE 

AD CELL PIN [LOWER PLATE 
Figure 1 Side view of crystal mounted between upper and lower 
plates with load cell pin in contact with upper plate. The [001] 
crystallographic axis of  the sample is normal to the surfaces of the 
upper and lower plates (and to the axis of the load cell pin). 
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Figure 2 Top view of sample platform containing crystal sample 
mounted between upper and lower plates. 

plates (see Fig. l) are monitored by electronic gauge 
heads (Mitutoyo model 599-988); one gauge head is in 
contact with the upper plate and the other with the 
lower plate (see Fig. 4); the displacement of the upper 
plate is electronically subtracted from that of the 
lower plate in an amplifier (Brown and Sharpe model 
1020) and recorded on the X axis of the X-Y recorder 
(see Fig. 4); the system can determine the difference 
between measurements, over five English and five 
metric ranges, of 0.0005in to 0.000005in ( l in  = 
2.54 cm) and 0.01 mm to 0.0001 mm, respectively; the 
relative displacement (of the bottom plate with respect 
to the top plate) is divided by the thickness of the 
crystal sample (i.e. the vertical dimension of the 
sample viewed in Fig. 1) to obtain the shear strain s. 

Shear strains of 0.0001 could be measured for a 
sample of I mm thickness. 

During the measurement of a stress-strain curve, 
the sample platform is driven forward at a constant 
rate. The strain rate is controlled by rotating the 
micrometer screw via a servo motor and tachometer in 
series with two 50:1 gear reductors that provide 
a net 2500:1 reduction of the angular velocity of 
the micrometer screw (with respect to that of the 
motor). In this manner, a range of  feed rates of 0.01 to 
10 #m sec-1 can be achieved; generally tests were run 
at a feed rate of 1 #m sec-~ (which corresponds to a 
strain rate of about 10 -3 sec ~ for a sample of I mm 
thickness). The shear testing fixture also has a rotary 
stage (see Fig. 3) and a second micrometer screw (not 
shown in Figs 2 or 3), oriented perpendicular to the 
micrometer screw shown in Fig. 2 (this second micro- 
meter screw controls movement of the sample plat- 
form to the left and to the right in Fig. 2); this feature 
is useful for aligning the specimen prior to testing. The 
shear testing fixture has the capability of rotating the 
crystal sample (by some prescribed angle 0 about the 
c axis of the sample). Thus, e.g., a shear stress can be 
applied initially along a [1 0 0] axis, say, and then (by 
a simple rotation) along some other axis (making an 
angle 0 with respect to the [1 00] axis). This is a con- 
venient feature for use in the study of the Bauschinger 
effect and related phenomena. 

The glue used to mount the sample between the upper 
and lower plates is Sauereisen No. 31 (Sauereisen 
Cements Co., Pittsburgh, PA); this glue was selected 
as optimum after experiments were carried out with 
numerous other glues. The major advantages of this 
glue are (i) it is strong, (ii) it adheres well to man2r 
substances (including HgI2) , and (iii) it has a high 
modulus of elasticity and is brittle (i.e. its deformation 
is negligible compared with that of the crystal sample). 
The only apparent disadvantage is that the surface of 
the HgI2 tends to react slightly with the glue after 
several weeks; this problem is overcome by not allow- 
ing the time between application of the glue and test- 
ing to exceed 3 days. The upper and lower plates are 
made of clear plexiglass (in order to be able to visually 
observe the quality of the adhesive layers between the 
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Figure 4 Schematic diagram of shear testing system. 

specimen and the plates). Prior to applying the glue, a 
razor was used to cut cross-hatched grooves in the 
lower surface of the upper plate and the upper surface 
of the lower plate, after roughening these surfaces with 
# 60 sandpaper. This was done to ensure a good joint 
between the glue and the plexiglass. The typical size of  
HgI2 samples used in our studies is about  9 m m  x 
9 mm x 0.7 mm; samples with thicknesses as low as 
3.3 mm and as high as 1.0 mm and areas as low as 
35 mm 2 and as high as 208 mm 2 were also tested. It is 
desirable to keep the thickness small in order to avoid 
placing a substantial torque on the sample during 
loading. No systematic variation of behaviour with 
sample thickness was observed in the range of  thick- 
nesses employed. The method of sample preparation 
is similar to that of  James and Milstein [2]. 

3. Results and discussion 
3.1. Exper imenta l  s t ress-st ra in re lat ions 
Examples of stress-strain data generated in the 
manner described in the prior section are shown in 
Fig. 5. (Although the experimental data are recorded 
continuously on the X - Y  recorder, selected experi- 
mental points are shown in this figure to distinguish 
the experimental data from the theoretical stress- 
strain curves computed using the semiempirical model 
described in the next subsection.) Experimentally, 
shear strains of  many hundreds of  percent are readily 
obtained with the test system. The typical shearing 
response of HgI2 consists essentially of  (a) an initial 
range of  shear stress that causes negligibly small 
plastic deformation (this range is about  10 to 20 psi 
(1 psi = 6.895 MPa) for the samples of  Fig. 5), (b) a 
middle range in which the onset of  appreciable plastic 
deformation is observed and in which the shear strain 
increases rapidly and non-linearly with increasing 
shear stress (and therefore the density of  the mobile, 
easy glide dislocations that are responsible for plastic 
deformation presumably Continues to increase as the 
shear stress increases), and (c) a "final" range in which 
the shear stress varies linearly with shear strain (it is 
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Figure 5 Representative experimental stress-strain data, for thin, 
single crystals slabs ofHgI 2 (0 sample l, �9 sample 2, �9 sample 3), 
taken with the shear testing system described in Section 2 and 
illustrated in Figs 14 and corresponding theoretical curves are 
based upon the Gaussian model described in Section 3.2. 

presumed that, in this region, the density of mobile, 
easy glide dislocations has reached a steady state 
value). The term "mobile",  as used here, refers specif- 
ically to dislocations that are currently moving, as 
distinct from those that may have been moving but 
have become stationary (e.g. by pinning) or those that 
are capable of  moving at increased stress levels, but 
have not yet become mobile. In the next subsection, 
we describe a theoretical model that incorporates 
these experimentally observed features (and their 
interpretations). 

3.2.  T h e o r e t i c a l  m o d e l  
The central feature of  the theoretical model that we 
use to analyse the shearing response of single crystal 
HgI  2 is that a normalized Gaussian distribution 

1 
f(s) - o_(2/l:)1/2 exp [ - ( s  - s0)2/20_ 2] (1) 

characterizes the plastic deformation process. In par- 
ticular, ifn represents either the density of(i) slip planes 
that are actively slipping when the stress-strain curve 
has reached its steady state region or of (ii) mobile, 
easy glide dislocations at steady state, then the quan- 
tity n ~' f ( s ) d s  represents, respectively, either the 
density (i) of  slip planes that are actively slipping at 
any stress Sl or (ii) of  easy glide dislocations that are 
mobile at stress sl. In other words, f ( s ) d s  can be 
interpreted to mean either (i) the fraction of newly 
active slip planes (relative to the number  of  active slip 
planes at steady state) that are generated when the 
stress is increased from s to s + ds or (ii) the relative 
density of  easy glide dislocations (relative to the steady 
state density) that become newly mobile when the 
stress is increased from s to s + ds. Both interpret- 
ations (i) and (ii) are mechanistic and both lead to the 
same phenomenological conclusions, although (ii) is 
consonant with microscopic theory of plastic defor- 
mation and work hardening in HgI 2 [2]; thus, in our 
discussions, we shall use the terminology of interpret- 
ation (ii). The increment of  plastic shear strain dep that 
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the crystal undergoes when the stress is increased from 
s to s § ds is given by 

dep = \(d%]ds/~s ( f ~ f ( ~ )  d~ + f(s)) ds (2) 

The total plastic deformation e_p at stress s is computed 
by integration of Equation 2, i.e. 

den) " f (~ ) )  (3) 
ep(S) = (dsjss fs  f(~)d~ + 

In practice the integrations are carried out numeri- 
cally. The quantity (d%/ds)~s is a constant equal to the 
rate of  change of plastic shear strain with shear stress 
in the steady state region of the stress-strain curve. (If 
s is a stress in the steady state reg ion , f  (s) is essentially 
zero and ~ f (~)  d~ is essentially unity; then Equation 
2 reduces to 

ds \ ds As 

in agreement with experiment.) The quantity 

f (~)  

represents the contribution to d% from dislocations 
that had already become mobile by the time the stress 
s is reached and 

ds A~ f(s) ds 

is the contribution to dsp from dislocations that 
become newly mobile when the stress is increased 
from s to s § ds. Numerical analysis of  the stress- 
strain curves consists of  determining the values of  the 
Gaussian parameters a and So and the steady state 
work hardening rates (expressed as (dsp/ds)ss 1) that 
yield a best least squares fit between the theoretical 
and experimental stress-strain curves. 

3.3. Comparison between experiment and 
theory 

The empirical parameters determined in the manner 
described above for the theoretical stress-strain curves 
shown in Fig. 5 are listed in Table I and the corre- 
sponding Gaussian distributions are shown in Fig. 6. 
The agreement between theory and experiment is seen 
to be excellent. This description permits the character- 
ization of yielding in the crystals in terms of two con- 

venient parameters, a and So, where a is the standard 
deviation of the distribution f(s) and, at the stress 
s = So, the density of  mobile dislocations has reached 
half its steady state value. The agreement between 

TABLE I Model parameters for the stress-strain curves shown 
in Fig. 5 

Crystal s o a (d%'~-I sc = s o - 2a 
sample (psi) (psi) \ ds Jss (psi) 

(psi) 

1 28.5 6.6 112 15.3 
2 31.7 7.7 99 16.3 
3 31.1 4.4 142 22.3 
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Figure 6 Normalized Gaussian distribution functions used to com- 
pute the respective theoretical stress-strain relations shown in 
Fig. 5. The distribution functions are determined by the parameters 
s o and a listed in Table I; the respective values ofs c are indicated by 
the symbols "e". (a sample l, b sample 2, c sample 3) 

theory and experiment seen in Fig. 5 is typical for data 
taken from the shear loading of samples made from a 
multitude of HgI2 single crystals and tested with 
various orientations of  applied c plane stress. For 
example, samples 2 and 3 of  Fig. 5 were prepared from 
the same parent crystal, which was different from that 
of  sample 1; the directions of  shear loading in samples 
1, 2, and 3, respectively, were at angles of  3 ~ 18 ~ and 
35 ~ with respect to the [100] axis. (The results of  
experimental studies, of  the influence of  orientation, 
within the c plane, upon the shearing behaviour of  
single crystal HgIs, will be presented separately.) 
Another useful parameter,  derivable from So and a is 
sc - so - 2a; when the shear stress s = so, according 
to this model, the density of  mobile dislocations has 
reached about  2% of its steady state value; thus, the 
value of sc is a good measure of  the onset of  yielding. 
The points s = sc are marked (in Fig. 6) on the distri- 
bution functions used to describe the stress-strain 
curves in Fig. 5. For the three samples of Fig. 5, 
sample 1 evidently yielded at a slightly lower stress than 
sample 2, and both yielded at a considerably lower 
stress than sample 3 (so of sample 1 = 15.3 psi < s~ of 
sample 2 = 16.3psi < so of sample 3 = 22.3psi). 
The value of a is a measure of  the "width" of  the 
transition from elastic deformation to steady state 
plastic deformation; as this transition narrows, 
decreases; if this transition were to narrow to the point 
where the stress-strain curve were to consist only of  
a linear elastic region and a linear plastic region 
(with a "sharp"  yield point at the intersection of the 
two regions), the "width" a of the Gaussian would 
approach zero (the distribution function would, in 
effect, become a Dirac c~-function at the yield stress). 
For  the three samples of  Figs 5 and 6, the region of 
transition from negligible mobile dislocations to a 
steady state density of  mobile dislocations occurred 
over a slightly narrower stress range in sample 1 than 
in sample 2 and over a considerably narrower stress 
range in sample 3 (a of  sample 2 = 7.7 > a of  sample 
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T A B  L E II Influence of  work hardening upon model parameters of  single crystals of  HgI 2 subjected to successive shear loadings. The 
"initial model parameters" were determined from stress-strain data taken during the initial loading, which work hardened the specimens 
to the indicated "work hardening stress". After the initial loading, the load was reduced to zero and then reapplied; the "work hardened 
model parameters" were determined during this second loading 

Sample Initial model parameters (psi) Work hardened model parameters (psi) Work hardening 
stress (psi) 

st cr s~ s o o s o 

A 5.3 13.6 24.2 3.3 23.8 30.4 30.3 
B 6.0 14.5 26.5 3.4 31.0 37.8 36.8 
C 5.2 14.0 24.4 3.2 28.0 34.4 33.0 
D 4.4 22.3 31.1 2.7 33.6 39.0 38.7 
E 3.5 11.8 18.8 2.1 20.2 24.4 24.6 
F 2.7 12.9 18.3 2.1 23.6 27.8 27.0 

l = 6.6 > a of sample 3 = 4.4). The two parameter 
Gaussian model is seen to provide a useful means of 
quantitatively describing the onset of plastic deforma- 
tion and the non-linear region of transition from the 
elastic to the linear, steady state, plastic stress-strain 
response in the HgI2 single crystals subjected to shear 
loading. It is well suited to our particular purposes of 
comparing and characterizing the yielding behaviour 
of single crystals that (i) have been grown under a 
variety of circumstances and (ii) exhibit a gradual 
transition from elastic to plastic deformation, without 
evidence of a sharp yield point or critical resolved 
shear stress. It is also useful for studying the influence 
of processing variables, such as the effects of work 
hardening or recovery, as is discussed below. 

3.4. Influence of work hardening and 
recovery on model parameters 

Work hardening by plastic deformation is known 
[2, 3] to increase the yield stress and sharpen the "yield 
point" in single crystal HgI 2. This phenomenon is 
examined quantitatively in terms of our model in 
Table II. Each of the six samples listed in this table 
was stressed in shear loading to the indicated "work 
hardening stress," during which time the stress-strain 
data were taken for determining the initial model 
parameters. A second set of model parameters was 
subsequently determined for each work hardened 
specimen, from data taken while shearing the speci- 
men a second time, in the same direction. Samples A 
and B were prepared from the same crystal, but were 
loaded in different directions within the c plane; 
samples C and D were from the same crystal and were 
loaded in the same direction (sample D in Table II is 
the same as sample 3 in Table I); samples E and F were 
from different crystals and were loaded in different 
orientations. As expected, in all cases, work hardening 
causes a to decrease (the "yield point" becomes 

T A B L E I I I Model parameters of  a single crystal subjected to 
three successive shear loadings, with a three minute time interval 
between loadings. The steady state work hardening rate (d~;p/ 
ds)~ s t = 99 psi for all loadings. The "work hardening stress" is the 
shear stress applied to the sample in the preceding loading 

Loading Work hardening stress s o cr sc 
(psi) (psi) (psi) (psi) 

1st - 31.7 7.7 16.3 
2nd 34.7 38.5 7.1 24.3 
3rd 40.2 44.6 5.8 33.0 

sharper) and So and sc to increase (the "yield stress" 
becomes greater). Also, in each case, the work hardened 
value of So is very close to the work hardening stress. 
This suggests that s o can be interpreted as a "bulk yield 
strength", whereas Sc is a good representation of the 
"onset of yielding", as mentioned earlier. For the work 
hardened samples of Table II, Sc is about 80-90% of 
the work hardening stress. This suggests that prior 
plastic deformation in a specimen can be recognized 
by a relatively high value of So combined with a low 
value of o; the relationship will be explored quan- 
titatively in subsequent studies. 

For the data reported in Table II, the single crystal 
HgI2 samples were loaded, unloaded, and soon after 
unloading, were reloaded. The process of recovery, 
after loading, can also be studied quantitatively using 
the shear testing system for data collection and the 
Gaussian model for data analysis. Detailed quan- 
titative studies of  work hardening and recovery will be 
carried out in due course; illustrative examples are 
given in Tables III and IV and in Figs 7 and 8. Table 
III shows how the model parameters change as the 
sample is work hardened, with three minute intervals 
between successive shear loadings. The three nor- 
malized Gaussians corresponding to the data of Table 
III are shown in Fig. 7. With each successive loading, 
both Sc and So increase and o decreases, as expected. 
However, with longer time intervals between loadings, 
substantial recovery of work hardening occurs, as is 
seen in Table IV and Fig. 8. In particular, the sample 
of  Table IV and Fig. 8 behaved "as expected" upon 
loading the second time (3 min after the first loading) 
and upon loading the fourth time (1 min after the third 
loading); i.e., in each of these loadings, the specimen 
(which had been work hardened in the preceding load- 
ing) exhibited larger values of So and Sc and a smaller 
value of a than in the preceding loading. However, 

T A B L E  IV Model parameters of  a single crystal subjected to 
four successive shear loadings, with different time intervals between 
each loading. The steady state work hardening rate (d%/ 
ds)g i = l 13 psi for all loadings 

Loading Work hardening s o a s c Time between 
stress (psi) (psi) (psi) loadings 
(psi) 

1st - 18.3 2.7 12.9 
3 min 

2nd 27.0 27.8 2.1 23.6 
20h 

3rd 32.4 30.9 3.9 23.1 
1 min 

4th 36.l 37.6 3.1 31.4 
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Figure 7 Influence of work hardening upon the normalized Gaus- 
sian distribution functions of single crystal HgI 2 subjected to shear 
loading; the model parameters are listed in Table III. The crystal 
sample was initially sheared while data for determining the first 
distribution function were taken; after a three minute interval (from 
the time of removal of the load), the crystal (which was work 
hardened by the initial loading) was sheared a second time and a 
second distribution function was determined; the process was 
repeated in a third loading. (a first loading, b second loading, c third 
loading) 
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Figure 8 Influence of work hardening and recovery upon the 
normalized Gaussian distribution functions of single crystal HgI 2 
subjected to shear loading; the model parameters are listed in 
Table IV. The times allowed to elapse between successive loadings 
were 3 min between the first and second, 20 h between the second 
and third, and I min between the third and fourth. (a first loading, 
b second loading, c third loading, d fourth loading) 

between the second and third loading (during the 20 h 
time interval), the normalized Gaussian distribution 
function of the sample evidently underwent a large 

increase  in width (i.e. a of  the third loading is greater 
than a of  the second loading), although the mean 
stress so is about  what would be expected (i.e., in the 
third loading, so = 30.9 psi, which is close to the work 
hardening stress of  32.4psi that was applied 20h 
before the third loading). It is of  particular interest to 
note that the values of  Sc are almost the same in the 
second and third loadings. This behaviour can be 
understood in terms of  the dislocation model of  James 
and Milstein [2], in which work hardening occurs 
when the easy glide dislocations, moving on (00 1) 
planes, are pinned by the hard glide dislocations. 
Recovery is represented by an "unpinning" resulting 
from thermal excitation; the larger the localized inter- 
nal stress in the neighbourhood of "tangles" or "pile- 
ups" of  pinned dislocations, the easier it will be for 
thermal excitation to unpin the dislocations. Only a 
fraction of the dislocations can be expected to become 
unpinned (the fraction will depend upon prestress, 
temperature, and time). Those dislocations that do 
become unpinned will, upon successive loading, begin 
to move (in response to the load) at lower stresses than 
those that have not become unpinned. Thus, as ther- 
mal excitation causes unpinning of easy glide disloca- 
tions, the value of Sc of a work hardened sample 
naturally decreases. This is what occurred during the 
20h recovery period between the second and third 
loadings of  the sample of  Table IV and Fig. 8. Since 
most of the dislocations that became pinned during 
work hardening are likely not to become unpinned by 
thermal excitation, the value of so is not likely to 
change significantly during recovery (since So is a 
measure of  "bulk yielding"). Because the Gaussian is 

ao 
normalized (i.e. 50 f (s)  ds = 1), increasing so while 
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keeping So approximately fixed results in a lowering of 
its amplitude f(so). 

In summary,  we have designed, built, and tested an 
experimental apparatus for the purpose of measuring 
the response of  thin HgI2 single crystals to shear 
stresses. Initial tests have been made of shear stress 
against shear strain on thin, single crystal slabs of  
HgI2 vapour grown at EG&G,  Santa Barbara Opera- 
tions. The results are analysed in terms of a two 
parameter  semiempirical model for yielding that fits 
the experimental data extremely well. The model 
assumes that the distribution function f (s )  for the 
fraction of dislocations (on the (00 1) planes) that 
become newly mobile when the stress is increased 
from s to s + ds is given by a normalized Gaussian 
with a mean stress so and standard deviation a. When 
the stress s = So, half of  the ultimately active disloca- 
tions on the (0 0 1) planes will have commenced move- 
ment. The "onset of  yielding" is identified as Sc -= 
So - 2a; at stress s = st, approximately 2% of the 
ultimately active dislocations are mobile. The par- 
ameters a and So are determined numerically from a 
best least squares fit to the experimental data. The 
utility of the model for studying work hardening and 
time dependent recovery has been established. Work 
hardening causes Sc and So to increase and a to decrease; 
during recovery, sc and o increase while so evidently 
changes very little. This behaviour is understood in 
terms of the dislocation model for pinning "(00 1) 
dislocations" by "{1 00} dislocations" [2]. The shear 
testing system and theoretical model will be used for 
extensive studies of  the shear response of single crystal 
HgI2, including tests of  radiation detectors of  various 
grades of quality, the orientation dependence of the 
stress-strain response in the (0 0 1) plane, work hard- 
ening, time dependent relaxation, and successive load- 
ings in different directions. 
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